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ABSTRACT

Natural killer (NK) cells are key innate immune cells that provide the first line of defense against viral
infection and cancer. Although NK cells can discriminate between “self” and “non-self,” recognize abnor-
mal cells, and eliminate transformed cells and malignancies in real time, tumors develop several strate-
gies to escape from NK cell attack. These strategies include upregulating ligands for the inhibitory
receptors of NK cells and producing soluble molecules or immunosuppressive factors. Various types of
NK cells are currently being applied in clinical trials, including autologous or allogeneic NK cells, umbili-
cal cord blood (UCB) or induced pluripotent stem cell (iPSC)-derived NK cells, memory-like NK cells, and
NK cell line NK-92 cells, for the treatment of different types of tumors. Chimeric antigen receptors
(CARs)-NK cells have recently shown great potential due to their redirect specificity and effective antitu-
mor activity. In this review, we summarize the mechanisms of tumor escape from NK cell recognition, the
current status and advanced progress of NK cell-based immunotherapy, ways of enhancing the antitumor

capacity of NK cells in vivo, and major challenges for clinical practice in this field.
© 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Natural killer (NK) cells are a subset of major components of the
innate immunity that provide the first line of defense against
invading pathogens and malignancies. Once activated, NK cells
can not only rapidly lyse malignant cells or viral-infected cells
without prior sensitization and independently of major histocom-
patibility (MHC) restriction, but also act as regulatory cells by
secreting several cytokines to initiate and broaden adaptive
immune responses against tumor or infected cells [1,2]. The effec-
tor function of NK cells is tightly governed by a balance between
inhibitory and stimulating receptors. NK cells distinguish normal
tissues through the engagement of killer cell immunoglobulin-
like receptors (KIRs) with MHC class I molecules [3,4], which
results in the transmission of strong inhibitory signals to block
NK cell activation. Once viral-infected cells or malignant trans-
formed cells lose their MHC class I molecules, these activating
NK cell receptors, such as NKG2D, NKp30, NKp46, and NKp44,
can recognize the stress-induced ligands expressed on target cells,
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which thus provide positive signals for NK cell killing of the targets
[5-7].

NK cells are usually considered to be one of the components of
the innate immune cells and to recognize antigens without speci-
ficity. It is notable, however, that some researchers have found that
NK cells may have features of adaptive immune cells, such as
memory, in certain situations. A unique group of tissue-resident
CD49a"DX5~ NK cells located in mouse liver has been found to
have memory features during skin-contact inflammation and influ-
enza virus infection [8-11]. More recently, a CD49a" NK cell
subset—a likely human counterpart of mouse CD49a*DX5™ liver-
resident NK cells—was found to have features of adaptive immune
cells in the human liver [12]. These CD49a" NK cells can be induced
from peripheral blood (PB) NK cells by stimulating with
interleukin-2 (IL-2), [L-12, and IL-15 in vitro; they have comparable
phenotypic and functional features to hepatic CD49a" NK cells,
such as high expression of interferon-y (IFN-y) and NKG2C [13].
In addition, cytomegalovirus (CMV) and combinations of cytokines
can induce NK cell memory responses. A murine Ly49H NK cell
subset has been found to exert a memory response and be respon-
sible for viral clearance during mouse CMV infection [14].
Similarly, human cytomegalovirus (HCMV)-induced memory NK
cells with a response to CMV rechallenge have been identified in
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recipients who have acute HCMV infection received hematopoietic
cell transplantation. The phenotypes of these CMV-specific mem-
ory NK cells are NKG2C*, KIR*, CD57", and NKG2A . These memory
NK cells persist for a long time in vivo during the first year after
allogeneic transplantation and are potent producers of IFN-y dur-
ing acute infection and upon secondary challenge [15,16]. In addi-
tion, brief pre-activation with IL-12, IL-15, and IL-18 induces
human NK cell differentiation into memory-like NK cells with
expression of CD94, NKG2A, and NKG2C, but a lack of CD57 and
KIRs. These cytokine-induced memory-like NK cells show
increased IFN-y secretion after restimulation [17]. It is important
to note that these findings on adaptive NK cells hold great promise
for application in immunotherapy for cancers or infective diseases.
In a phase I clinical trial on the adoptive transference of cytokine-
induced memory-like NK cells, the NK cells showed robust antitu-
mor capacity against acute myeloid leukemia (AML) [18].

Immune cell-based immunotherapy—and chimeric antigen
receptor (CAR)-T cells in particular—has recently become a break-
through in cancer therapy [19,20]. More specifically, acute lym-
phoblastic leukemia (ALL) clinical complete response rates were
as high as 70%-90% in patients who accepted infusions of CD19-
targeting CAR-T cells [21]. In fact, NK cell-based immunotherapy
has several advantages over T cell- or CAR-T cell-based therapy.
Phase I and II clinical trials have shown that the adoptive transfer
of allogeneic NK cells is safe and well-tolerated, and will not lead to
graft-versus-host disease (GVHD) [22-24]. The source of T cells is
usually restricted to autologous cells, but NK cells can be prepared
from autologous or allogeneic PB, obtained from bone marrow or
umbilical cord blood (UCB), or induced from human embryonic
stem cells or pluripotent stem cells; furthermore, the NK-92 cell
line can be used directly. In addition, many drugs are designed to
arm NK cells and achieve good therapeutic effects. For example, a
superagonist complex of IL-15 and IL-15Ra named ALT-803 can
bind to the surface IL-15 receptor and activate NK cells [25,26],
thus promoting NK cell proliferation and cytotoxicity against
hematologic malignancies and solid tumors, including multiple
myeloma, ovarian cancer, bladder cancer, and breast and colon car-
cinomas [27-30]. In a phase I clinical study, 19% of evaluable
patients with hematologic cancers were observed to have
responses after administration with ALT-803, including one com-
plete remission lasting seven months [27]. Thus, NK cell-based
tumor immunotherapy has shown great promise. In this review,
we provide a summary of the mechanisms of tumor escape from
NK cell recognition, the current status and advanced progress of
NK cell-based immunotherapy, strategies to enhance the efficacy
of NK cells in vivo, and major challenges for clinical practice in this
field.

2. Mechanisms of tumor escape from NK cell
immunosurveillance

Although NK cells are major components of the innate anti-
cancer immunity, tumors develop various strategies to evade NK
cell attack or to impair the activity and function of NK cells. These
strategies have a strong impact on the efficacy of NK cell therapy.
NK cell dysfunction has been reported in various hematologic
malignancies and solid tumors [6,31-33]. For example, under
immune stress, tumor cells often upregulate the expression of
ligands for the inhibitory NK receptors, such as human leukocyte
antigen-G  (HLA-G), which is a ligand for KIR2DL4,
immunoglobulin-like transcript 2 (ILT2), and ILT4, in order to
evade NK cell-mediated cytotoxicity [34]. Ectopic HLA-G expres-
sion has been found to correlate with poor prognosis in tumor
patients, which implies that this molecule plays a role in tumor
immune escape [35]. HLA-G inhibits the proliferation and cytotox-

icity of NK cells and reduces the production of IFN-y and tumor
necrosis factor-o (TNF-a) through engagement with ILT2 [36]. It
has been reported that HLA-G expressed on Ewing sarcomas sup-
presses the activity of GD2-specific CAR-expressing NK cells [37].
The blocking of HLA-G on tumor cells in patients with chronic lym-
phocytic leukemia (CLL) increased the tumor’s susceptibility to NK
cell-mediated cytotoxicity [38].

Another important mechanism of tumor escape from NK cell
surveillance involves the soluble molecules or ligands produced
by tumor cells. IL-2 is required for the proliferation and activation
of NK cells. However, soluble IL-2Ra produced by tumors can bind
to IL-2 and prevent it from binding to membrane IL-2R on the sur-
faces of NK cells, resulting in insensitivity to exogenous IL-2
administration and impairment of NK activity [39]. Impaired NK
cell function has also been reported to correlate with elevated
serum levels of soluble ligands, such as BAG6 for NKp30, and
MHC class I-related chain A (MICA) and ULBP1-3 for NGK2D
[32,40]. Soluble ligands shed from tumor cells prevent specialized
NK cells from recognizing the ligands on the membrane of the
tumor cells [41-43]. Tumor cells shed the ligands from the cell
membrane through the activity of protein disulfide isomerase
ERp5, disintegrins, and the metalloproteinases ADAM10 and
ADAM17 [42,44]. Ferrari de Andrade et al. [45] recently designed
antibodies directed against the site of proteolytic cleavage of MICA
and MHC class I-related chain B (MICB), and confirmed that these
antibodies effectively prevent the shedding of MICA and MICB from
the surfaces of tumor cells, thus reactivating the antitumor immu-
nity of NK cells.

The major mechanisms of tumor escape are associated with the
tumor microenvironment (TME), which consists of immunosup-
pressive cells (e.g., regulatory T cells (Tregs), tumor-associated
macrophages (TAMs), and myeloid-derived suppressor cells
(MDSCs)), soluble factors, suppressive molecules expressed on
tumor cells or antigen-presenting cells, and the extracellular
matrix. The immunosuppressive microenvironment not only pro-
motes tumor growth and migration, but also helps the tumor cells
evade the surveillance of the host immunity and resists
immunotherapy [46-49]. Tumor cells secrete various immunosup-
pressive factors, such as transforming growth factor-g (TGF-B), IL-
10, indoleamine 2,3-dioxygenase (IDO), and prostaglandin E2
(PGE2), which suppress NK cell antitumor activity [50]. Several
groups have demonstrated that tumor-cell-derived IDO and PGE2
sharply suppress the cytotoxicity and cytokine production of NK
cells [51,52]. Several suppressive cells such as Tregs, MDSCs, and
M2-macrophages can impair the cytotoxicity of intratumoral NK
cells by secreting IL-10 and TGF-B [53,54]. Tumor cells, antigen-
presenting cells, and stromal cells in the TME express high levels
of inhibitory molecules, such as programmed-death ligand 1 (PD-
L1), to prevent NK cell activation through ligation with their
respective inhibitory receptors on NK cells, thus leading to NK cell
dysfunction or even exhaustion [6,55-57]. Therefore, tumor-
infiltrating NK cells usually exhibit an exhausted state and are
prone to apoptosis; they are also characterized by decreased
expression of activating receptors, upregulated inhibitory recep-
tors (e.g., NKG2A, the co-inhibitory receptor T cell immunoglobulin
and immunoreceptor tyrosine-based inhibitory motif domain
(TIGIT), and the T cell immunoglobulin and mucin-domain
containing-3 (Tim-3)), and low secretion of IFN-y and TNF-o
[33,55,58]. Blockading these inhibitory checkpoint receptors can
restore NK cells from exhaustion and significantly improve the
therapeutic efficacy of immunotherapy [59].

It is important to design appropriate strategies to overcome the
mechanisms of tumor immune escape—and particularly to over-
come the immunosuppressive microenvironment—in order to
obtain ideal therapeutic efficacy for NK cell-based antitumor
immunotherapy.
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3. Current status of NK cell-based tumor immunotherapy

3.1. Peripheral blood-derived autologous or allogeneic NK cells for
tumor immunotherapy

Initial attempts to treat tumors by means of adoptive
immunotherapy involved transferring IL-2-activated autologous
NK cells derived from PB [60], as these have been shown to reduce
the growth of pulmonary metastases in murine models. However,
only a limited antitumor effect was observed when this method
was used clinically [60,61]. The main cause of this limited effect
was that the self-HLA molecules on tumor cells match with the
KIRs on autologous NK cells, resulting in the suppression of NK cell
activity. Later, KIR ligand-mismatched allogeneic or haploidentical
NK cells were adopted in order to overcome this suppression due
to the “missing-self” recognition of tumor cells [62]. An infusion
of allogeneic NK cells reduced host rejection of the transplant
while eliminating leukemia relapse, thus ensuring both efficacy
and safety.

Several clinical trials have shown that NK cell infusions are
well-tolerated without GVHD, cytokine release syndrome (CRS),
or neurotoxicity [24,63-71]; however, the therapeutic effects vary
enormously in different types of cancers. Objective clinical
responses vary from 25% to 100% for hematologic malignancies,
such as refractory non-Hodgkin’s lymphoma (NHL), myelodysplas-
tic syndromes (MDS), and AML. A recent clinical trial showed that
all the evaluable patients (5/+5 evaluable) with high-risk MDS and
AML achieved objective responses after receiving infusions of hap-
loidentical NK cells [65]. The efficacy of allogeneic NK cell infusions
has also been evaluated, often in combination with antibody treat-
ment, in solid tumors. For example, in a phase I clinical trial for the
treatment of patients with advanced gastric or colorectal cancers,
adoptive NK cell therapy was given in combination with trastuzu-
mab or cetuximab chemotherapy. Four of the six evaluable
patients were stable in disease progression. It is important to note
that combination therapy significantly promoted IFN-y production
and decreased the number of Tregs in the periphery, thus resulting
in a reduction of tumor size in three of these four stable patients
[68]. Another phase I clinical trial, in which allogeneic NK cell infu-
sion was combined with cetuximab for the therapy of liver meta-
stasis from gastrointestinal cancer, showed objective clinical
responses in three out of nine patients [70]. The common problem
of poor response in these trials was associated with the limited
donor NK cell lifespan in vivo (usually two weeks) and the increase
in Tregs related to IL-2 administration. Two clinical trials
(NCT00274846 and NCT01106950) used IL-2-diphtheria fusion
protein to eliminate Tregs during the infusion of haploidentical
NK cells for the therapy of AML. The results showed that therapy
with IL-2-diphtheria fusion protein improved the rates of complete
remission and disease-free survival, which were associated with
the effective Treg depletion, donor NK cell expansion, and higher
serum IL-15 levels [72]. The therapeutic efficacy may be further
improved through the administration of exogenous IL-15 but not
IL-2, because IL-15 does not promote the survival and expansion
of Tregs [73,74].

3.2. NK cells derived from umbilical cord blood or induced pluripotent
stem cells for tumor immunotherapy

Aside from NK cells from PB, UCB and induced pluripotent stem
cells (iPSCs) are currently used as sources of functional NK cells by
means of co-culturing with supportive feeder cells or through
stimulation alone with combinations of cytokines. The prominent
advantages of UCB or iPSCs, such as the wide range of available
sources and ease of clinical-grade expansion under good manufac-
turing practice (GMP) standards, are expected to allow UCB- or

iPSC-derived NK cells to become an “off-the-shelf” product for can-
cer immunotherapy.

At present, large-scale clinical-grade expansion techniques for
UCB- and iPSC-derived NK cells have been well established. A high
log-scale ex vivo NK cell expansion method from CD34"UCB has
been established and can be used as a clinical-grade protocol
for adoptive immunotherapy. This method permits greater than
15000-fold expansion efficiency with 100% purity. CD34"
hematopoietic progenitor cells from UCB were expanded with a
novel clinical-grade medium supplemented with a combination
of cytokines; this process generated functional CD56" NK cells with
NK cell receptor expression and the ability to efficiently lyse tumor
cells, including leukemia and solid tumors [75]. The iPSC-derived
NK cells can be expanded 100-1000 fold through a two-stage cul-
ture system with a combination of cytokines (including IL-3, IL-7,
IL-15, SCF, and FIt3L) without exogenous stromal cells [76]. The
antitumor activity of UCB- or iPSC-derived NK cells has been eval-
uated on various types of tumors, including hematological and
solid cancers [76-84]. However, NK cells expanded from UCB or
iPSCs have poorer or similar antitumor functions compared with
PB mononuclear cell (PBMC)-derived NK cells [76-81]. Moreover,
UCB- and iPSC-derived NK cells express low levels of KIRs; this
raises concerns about NK cell education, which is the process by
which NK cells are endowed with diverse effector capacities while
remaining tolerant to self-HLA [85-88]. Educated NK cells usually
have lower thresholds for activation or inhibitory signaling,
whereas uneducated NK cells are hyporesponsive to activation or
inhibition. In contrast, a recent study shows that uneducated NK
cells from UCB have superior cytotoxicity against HLA-expressing
cervical tumor cell lines compared with educated NK cells from
PBMCs [84]. Thus, it remains to be answered whether NK cell edu-
cation is essential for immunotherapy against cancers.

Five clinical studies are presently focusing on UCB-derived NK
cells for the therapy of relapsed or refractory hematological and
solid tumors. Four studies (NCT01729091, NCT03019640,
NCT02280525, and NCT03539406) are currently recruiting
patients. One trial (NCT00354172) has finished its research. This
clinical research study aimed to find the highest tolerable dose of
NK cells that can be given with chemotherapy to patients with
CLL, and to learn whether the addition of NK cells is effective in
treating this disease. The clinical results showed that two of the fif-
teen patients with hematologic cancers were disease-free and alive
for six months after treatment with UCB-derived NK cell infusions.

3.3. NK cell-line-based tumor immunotherapy

There are several established NK cell lines, including NK-92,
NKL, YT, NK-YS, and NKG [89-91]. Among these, NK-92 cells dis-
play a robust and broad-spectrum cytotoxicity against malignant
cells, and are the only cell line that has achieved US Food and Drug
Administration (FDA) approval for clinical trials [92]. NK-92 cells
have several advantages in clinical practice. They are easily
expanded under GMP conditions compared with allogeneic or
UCB-derived NK cells, which leads to lower costs for patients.
NK-92 cells can be efficiently manipulated with viral or non-viral
vectors to enhance their targeting, homing, and killing activity.
Clinical trial results have confirmed the safety of infusion with
NK-92 cells, even at a dose of 1 x 10'° cells-m~2 [93-95]. The effi-
cacy of NK-92 cell infusion has been assessed in patients with mel-
anoma, sarcoma, colorectal cancer, renal carcinoma, lung cancer,
and AML. It seems that patients with lung cancer (three out of four)
or renal cell cancer (five out of eleven) have better clinical
responses than others in terms of achieving a mixed response or
stable disease [93,94]. A recent phase I clinical trial using IL-2-
activated NK-92 cells demonstrated their safety and feasibility,
along with transient activity in three out of seven patients with
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refractory and relapsed AML [95]. However, due to the limited per-
sistence of these NK cells in vivo, the efficacy of NK-92-based ther-
apy remains limited, even with repeated infusions. In addition, NK-
92 cells must be irradiated before infusion in order to completely
abrogate the proliferation, due to their origin from an NHL patient
[96]. However, this irradiation process severely impairs their per-
sistence in vivo, such that they are usually undetectable in circula-
tion within several days [94]. Although more frequent cell
infusions may be a simple approach to improve the persistence,
this solution raises concern because it is likely to evoke a humoral
immune response against the HLA antigens expressed on NK-92
cells. Therefore, several groups are attempting to redirect the
specificity and improve the clinical results by means of genetic
modifications, such as CAR-expressing NK-92 cells.

3.4. Potential immunotherapeutic benefits of memory-like NK cells

Although they are a main component of the innate immunity,
recent evidence indicates that NK cells display memory-like adap-
tive features. Three types of NK cells with features of memory-like
immune response have been reported: cytokine-induced memory-
like NK cells, CMV-specific NK cells, and hepatic liver-resident NK
cells [97]. The common features of memory-like NK cells are:
expression of a higher level of NKG2C; long-term in vivo prolifera-
tion and persistence; and increased IFN-y secretion after restimu-
lation with antigens or cytokines, or when coming into contact
with tumor cells. The three types differ in that cytokine-induced
memory-like NK cells and CMV-specific NK cells exert stronger
cytotoxicity against targets, whereas hepatic liver-resident NK
cells display poor degranulation [12]. Although a great deal of pro-
gress has been achieved in NK cell immunotherapy, clinical efficacy
is still limited due to the short lifespan and low cytotoxicity of NK
cells in vivo. The memory features and the long-term in vivo
proliferation and persistence of memory-like NK cells make them
a possible breakthrough as a novel source of NK cell-based
immunotherapy against tumors.

Human cytokine-induced memory-like NK cells are obtained
through pre-activation of human PB-derived NK cells with various
combinations of the cytokines IL-12, IL-15, and IL-18 [17,18,98,99].
These memory-like NK cells are currently being assessed in clinical
studies, and a phase I clinical trial has been completed. After brief
pre-activation and adoptive transfer, these NK cells displayed
robust antitumor activity against AML in a xenograft mice model
[18]. In the clinical study, the transferred memory-like NK cells
proliferated and reached a peak from day 7 to day 14; furthermore,
they expanded by an average of 419 fold, when comparing day 7
with the first day (day 1) after infusion [18]. It is important to note
that the expanded memory-like NK cells displayed potent anti-
leukemia function. Five out of nine AML patients transferred with
memory-like NK cells achieved a clinical response, with four com-
plete remissions [18]. Thus far, the efficacy of cytokine-induced
memory-like NK cells has only been tested in AML patients. Other
types of tumor—and solid tumors in particular—remain to be
evaluated.

A memory NK cell response has also been found during HCMV
infection. Foley et al. [15] have shown that in allogeneic
hematopoietic transplant recipients, donor-derived NK cells
demonstrate memory-like features, with increased frequencies of
NKG2C* NK cells and higher production of IFN-y when reactivated
by CMV infection—features that play a significant role in reducing
relapse. The activating receptor NKG2C, whose ligand is HLA-E,
might serve as a marker for these memory-like NK cells. CMV-
induced NKG2C" NK cells have been shown to display strong cyto-
lytic activity against tumors strongly expressing HLA-E in vitro
through increased degranulation and IFN-y secretion [100,101].
Furthermore, an efficient method for the ex vivo expansion of

NKG2C" NK cells has been established [102]. NKG2C" NK cells are
preferentially ex vivo expanded from healthy donors through cul-
turing with HLA-E-transfected 721.221 cells as feeder cells, and
then stimulating with IL-15 for two weeks [101,102]. The ex vivo
expanded NKG2C* NK cells exhibit differentiated phenotypes,
including low expression of NKG2A, CD7, CD16, and siglec-7 and
high expression of CD2, CD57, CD226, and granzyme B [102]. It is
important to note that these expanded NKG2C" NK cells carry a
single self-specific KIR, which allows them to completely overcome
the HLA-C barriers and exert stronger cytotoxicity against mis-
matched tumor cells. Despite certain challenges that require solu-
tions, such as the low expansion (2-4 fold after a 14-day
expansion), the features of the specific expansion of a single KIR-
expressing NK cell subset and the high potential cytolytic activity
of NKG2C*-adaptive NK cells are appealing, so these NK cells hold
promise to become the next generation of NK cell-based cancer
immunotherapy [16,103]. It is notable that the NKG2C*-adaptive
NK cells were engineered with a third-generation anti-CD19-CAR,
and exhibited superior cytolytic capacity compared with all other
NK subsets, thus confirming their feasibility and demonstrating
the great promise of CAR-modified primary adaptive NK cells in
cancer immunotherapy [104].

Phenotypic features of liver antigen-specific memory NK cells
were first identified in mice [8]. The liver contains two distinct
types of NK cells: liver-resident CD49a*DX5~ NK cells and conven-
tional CD49a DX5" NK cells. Liver-resident CD49a*DX5~ NK cells
have a memory potential with robust recall responses after the
challenge in contact hypersensitivity models [8,105,106]. Later, a
population of intrahepatic CD49a" NK cells was similarly identified
with memory-like features in humans [12]. Human intrahepatic
CD49a* NK cells express a high level of NKG2C and low levels of
NKG2A, CD16, CD57, and perforin. Upon stimulation, CD49a* NK
cells produce large amounts of inflammatory cytokines, but
degranulate poorly. Recent studies have shown that IL-12 and
IL-15 can stimulate the differentiation of PB NK cells into
CD49a*CXCR6" NK cells in vitro [13]. These CD49a*CXCR6" NK cells
express a high level of NKG2C and produce IFN-y, with a similar
phenotype and function as liver-resident CD49a* NK cells. Human
intrahepatic CD49a" NK cells may become a promising NK cell can-
didate for the immunotherapy of liver carcinoma or related chronic
liver diseases.

3.5. CAR-NK cells for tumor immunotherapy

Adoptive immunotherapy with CAR-T cells has had strikingly
positive clinical results for the treatment of hematological malig-
nancies [107,108]. The use of CD19-targeted CAR-T cells for the
treatment of relapsed B-ALL and certain types of relapsed NHL
has been approved by the FDA administration. However, a number
of obstacles still remain that plague this clinical application. Infu-
sions of CAR-T cells are often accompanied by side effects, such
as CRS, neurotoxicity, and on-target/off-tumor effects [109].

CAR-T cells are usually prepared from T cells from the patients’
autologous blood in order to prevent GVHD, thus making the
preparation personalized, time-consuming, and costly. CAR-NK
cells have several advantages that overcome these limitations
[20,110]. CAR-NK cells can be prepared as an “off-the-shelf”
product without the restriction of autologous cells due to their
sufficient safety and low likelihood of triggering GVHD upon
allogeneic infusion. NK cells usually secrete restricted levels of
IFN-y and GM-CSF, and do not secrete IL-1 and IL-6, which are
the main cytokines to initiate CRS. Furthermore, CAR-NK cells
retain their natural receptors, such as NKp46, NKp30, NKp44,
NKG2D, and CD226, which recognize stress-induced ligands
independent of CARs; as a result, they can decrease the likelihood
of relapses related to a loss of CAR-targeting antigen.
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Given the abovementioned advantages of NK cells, CAR-NK cells
are now being explored for the therapy of both hematological and
solid tumors, and have shown great promise. In preclinical studies,
CAR-NK cells have displayed powerful antitumor efficacy in mur-
ine tumor-bearing models. For example, transferring wild-type
epidermal growth factor receptor (EGFR) and EGFRvIII-targeting
CAR-NK-92 cells significantly reduced the growth of glioblastoma
and effectively prolonged the survival time of tumor-bearing mice,
compared with the transference of unmodified NK-92 cells [111].
Therapy with glypian-3 (GPC3)-targeted CAR-NK-92 cells for hep-
atocellular carcinoma has also markedly reduced the tumor burden
in an orthotopic xenograft model [112].

However, there are still several limitations affecting the suc-
cessful clinical translation of CAR-NK cells. In contrast to T cells,
arming CAR-NK cells is challenging due to the low transfection effi-
cacy to PB-derived NK cells and the short persistence in vivo [110].
Many researchers are exploring methods to improve the efficacy of
transfecting primary NK cells; however, no remarkable progress
has yet been made. Shimasaki et al. [113] have used mRNA electro-
poration to transmit an anti-CD19-CAR into human primary NK
cells. The expression level of the anti-CD19-CAR reached 40.3% in
freshly purified NK cells and 61.3% in expanded NK cells, with a cell
viability of 90%, at 24 h after electroporation. This method of mod-
ifying NK cells significantly enhanced the specific cytolysis of the
NK cells against CD19" tumor cells in vitro. The tumor burden in
mice after treatment markedly decreased, but relapse occurred
during the later period due to the transient antitumor effects
[113]. Thus far, two clinical trials that manufacture CAR-NK cells
with mRNA electroporation are being carried out in order to assess
the safety and feasibility of this therapy. One trial is targeting CD19
for the treatment B lymphoid malignancies (NCT01974479) spon-
sored by National University Health System in Singapore, and the
other is using NKG2D ligand-targeting CAR-NK cells for the therapy
of patients with metastatic solid tumors, sponsored by The Third
Affiliated Hospital of Guangzhou Medical University (Guangzhou,
China) in 2018 (NCT03415100).

To overcome problems with the transient expression of CARs
and the low transfection efficiency, and to obtain stable CAR-
expressing NK cells, several groups have begun using NK-92 cells
or UCB/iPSCs-derived NK cells as superior CAR drivers. CAR-NK-
92 cells display robust activity against CAR-targeting tumors. Many
tumor antigens are applied as targets in CAR-NK cell studies,
including tumor antigens from hematological malignancies (e.g.,
CD19, CD20, CD33, CD138, and CS-1) [114-118] and solid tumors
(e.g., HER2, erbB2, EpCAM, mesothelin, GD2, GPA7, GPC3, PSCA,
EGFR, and EGFRvIII) [37,111,112,119-123]. Five clinical studies
(NCT02892695, NCT02742727, NCT02944162, NCT03383978, and
NCT02839954) at phases I and II are focusing on NK-92 cells that
express CD19, CD7, and CD33-specific CAR for lymphoma and leu-
kemia; HER2-specific CAR for glioblastoma; and MUC1-specific
CAR for MUC1" relapsed or refractory solid tumors.

Although CAR modification could increase the cytolytic poten-
tial of NK-92 cells against targets, the persistence of NK-92 cells
in vivo is still limited due to the irradiation occurs before adminis-
tration. Liu et al. [124] have presented a novel method to generate
CD19-specific CAR-NK cells from UCB-derived NK cells, and have
claimed that their approach can improve the transfection efficiency
and persistence of NK cells in vivo. NK cells were genetically mod-
ified with a retroviral vector containing the CD19-specific CAR gene
and IL-15 gene in order to drive the expansion and persistence of
NK cells, and an inducible caspase-9 in order to eliminate the
transduced cells when necessary. This modification, and particu-
larly the introduction of IL-15, significantly improved the prolifer-
ation and persistence of NK cells in vivo, and augmented the
antitumor activity compared with only CAR-transduced NK cells.
It is notable that the CAR-NK cells were able to persist for at least

68 d post-infusion [124]. A clinical trial (NCT03056339) sponsored
by the MD Anderson Cancer Center was approved in 2017 and
aimed to evaluate whether infusions of UCB-derived CD19-
specific CAR-NK cells would improve the disease in stem cell trans-
plant patients with relapsed or refractory B lymphoid
malignancies.

4. Challenges and perspectives

An increasing number of research studies and clinical trials
have demonstrated the superiority of NK cells in clinical applica-
tions for cancer therapy. Various approaches are being employed
to enhance the in vivo proliferation, persistence, and antitumor
capacity of NK cells (Fig. 1). However, the efficacy of NK cells is still
insufficient, especially for the treatment of solid tumors. Many
challenges limit the efficacy of NK cell-based immunotherapy; par-
ticular challenges include the limited in vivo proliferation and per-
sistence, and the immunosuppression of the TME. Different
combinations of multiple strategies have been proposed to aug-
ment the antitumor efficacy of NK cells, prolong their survival
and persistence in vivo, and restore NK functions from exhaustion
in the TME. NK cells are a group of heterogeneous cells with differ-
ent functional subsets, such as tissue-resident NK cells, memory-
like NK cells, and single self-specific KIR-expressing NK cells. The
selective expansion of a suitable NK cell subset and its application
to an appropriate type of tumor are worth exploring. UCB-derived
NK cells or memory-like NK cells have longer lifespans than PB-
derived NK cells, and thus may be ideal sources for NK cell therapy.
The introduction of a combination of cytokines such as IL-12, IL-15,
and IL-21 may further enhance the in vivo proliferation and persis-
tence of these NK cells. CAR is a powerful tool to improve the cyto-
lytic activity of NK cells; however, only a few studies have
designed CAR constructs based on NK cell features [120,125]. Thus,
most CAR-NK cells share the main constructs of CARs with CAR-T
cells, without considering the unique features of NK cells. A
promising field of investigation is to design an optimized structure
of CAR that is suitable for NK cells, and then transduce the CAR into
memory-like NK cells or a specific NK cell subset. Kaufman and
colleagues [126] recently designed and tested nine different NK
cell-specific CAR constructs containing different NK cell-specific
activating domains, and utilized human iPSCs to produce
mesothelin-targeted CAR-NK cells. The NK-specific CAR-NK cells,
and particularly the optimized NKG2D-2B4{-iPSC-NK cells, demon-
strated markedly augmented cytolytic capacity, significantly inhib-
ited tumor growth, and prolonged survival in an ovarian cancer
xenograft model [126]. It is important to note that the NK
cell-specific CAR-mediated signaling activity effectively improved
the in vivo expansion and survival of the NK cells.

Furthermore, NK cells are usually induced in a state of dysfunc-
tion or exhaustion in the TME [6], which significantly impairs their
persistence and cytotoxicity. Strategies that target the TME may
improve the efficacy of NK and CAR-NK cell-based immunother-
apy. Some studies have shown that blocking the PD-1 pathway
could partially reverse the dysfunction and exhaustion of NK cells
[127,128]. Levels of PD-1 were found to be specifically upregulated
on tumor-infiltrating NK cells in various tumor models, and PD-1
engagement by PD-L1* tumor cells potently suppresses NK cell-
mediated antitumor immune responses. Thus, the impaired antitu-
mor activity of NK cells could be restored by a PD-1 and PD-L1
blockade [127]. It is notable that the TIGIT was found to be highly
expressed on tumor-infiltrating NK cells and T cells, and that the
level of TIGIT was positively correlated with tumor progression
and the functional exhaustion of both T cells and NK cells, making
TIGIT an important checkpoint receptor [59,129-131]. A blockade
of TIGIT significantly reversed NK cell exhaustion and restored
the cytotoxicity and cytokine secretion activity of both NK cells
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the PB and then activated with cytokines (IL-2 or IL-15) before administration into the patient. B: UCB and iPSCs are used as a source of functional NK cells by co-culturing
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cytokines such as IL-12, IL-15, and IL-18. E: NKG2C"-adaptive NK cells are preferentially ex vivo expanded from healthy donors through culturing with HLA-E-transfected
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enhance the antitumor efficacy of NK cell-based immunotherapy.

and T cells in different solid tumor models; it also finally prolonged
the overall survival of tumor-bearing hosts [59]. Another co-
inhibitory receptor, Tim-3, is also reported to be highly expressed
on tumor-infiltrating NK cells from patients with different types of
solid tumors, such as metastatic melanoma, hepatocellular carci-
noma, mammary adenocarcinoma, and colon cancer. The level of
Tim-3 on tumor-infiltrating NK cells was found to positively corre-
late with tumor progression and poor prognosis of patients with
melanoma. However, a blockade of Tim-3 with antibody was found
to reverse NK cell exhaustion and markedly restore the antitumor
efficacy of NK cells [132,133]. Therefore, CAR-transduced NK cells
combined with checkpoint inhibition (e.g., a blockade of PD-1,
TIGIT, NKG2A, or Tim-3) might further increase antitumor immune
responses to cancer. Similar strategies include combination ther-
apy with the elimination or blockage of immunosuppression from
MDSCs, Tregs, TAMs, TGF-B, and other immunosuppression in the
TME.

In summary, the striking antitumor activity of NK cells is finally
being translated into the clinic, where it has shown remarkable
promise. Elaborately designed ideal strategies that can be com-
bined with advanced techniques to improve the proliferation, per-
sistence, and functions of NK cells and to overcome the bottlenecks
in clinical translation will maximize the efficacy of adoptive NK cell
immunotherapy.
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